Accurate Representation of Excitation and Loading for Arbitrarily Shaped Antennas Composed of Conducting Surfaces in the Method of Moments

نویسنده

  • K. F. A. Hussein
چکیده

In this work, a new method is introduced to model the excitation and loading for antennas composed of arbitrarily shaped conducting surfaces treated by the elctric field integral equation method described by Raw-Wilton-Glisson (RWG). Instead of using a single non-boundary edge to represent a zero-width exciting gap according to the conventional method, the proposed method uses either single or multiple pairs of facing boundary edges to form a real gap of arbitrary shape and width. The new method has many advantages over the conventional (zero-width) source/load representation considering the flexibility in shaping the gap to fit the antenna surface and the accuracy of the obtained results especially for the antenna input impedance and the input current distribution. The new method is described mathematically in detail. Modified basis functions are described for the gap source/load. Numerical results are obtained to investigate the dependence of the antenna input impedance and the current distribution along the gap length on the gap width, the geometrical shape of the gap and the surface segmentation resolution along the gap length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide

The characteristics of dielectric backed planar conducting layers of arbitrarily shaped in a rectangular waveguide are calculated by means of coupled integral equation technique (CIET) which accurately takes higher order mode interactions. Equivalent structures for the accurate analysis whole structure are introduced in which magnetic surface currents are identified as the unknowns at the apert...

متن کامل

Hybrid MM–PO–Fock Analysis of Monopole Antennas Mounted on Curved Convex Bodies

The present contribution deals with a hybrid method combining the method of moments (MM) with the physical optics (PO) approximation and asymptotic currents based on Fock theory. This current based hybrid approach is employed to deal with arbitrarily shaped monopole antennas located on perfectly conducting, curved convex surfaces. Some examples, e.g. an inverted–L antenna mounted on an open tru...

متن کامل

Shielding Effectiveness of a Lossy Metallic Enclosure

In this paper, shielding effectiveness (SE) of a perforated enclosure with imperfectly conducting walls is evaluated. To this end, first, an accurate numerical technique based on method of Moments (MoM) ispresented. In this method, lossy metallic walls of the enclosure are replaced by equivalent electric surfacecurrent sources. Then, the impedance boundary condition on the imperfectly conductin...

متن کامل

A Novel Volcano Smoke Antenna with Optimal Shape

The design of a novel volcano smoke antenna for UWB indoor applications is presented. The design method is based on a general description for the geometry of UWB monopole antennas which is capable of producing most possible shapes for these antennas. It is also compatible with different optimization methods. In addition to a volcano smoke antenna, this method is used to design two optimized mon...

متن کامل

Analysis of Reflector and Horn Antennas Using Adaptive Integral Method

This paper presents an analysis of electrically large antennas using the adaptive integral method (AIM). The arbitrarily shaped perfectly conducting surfaces are modeled using triangular patches and the associated electric field integral equation (EFIE) is solved for computing the radiation patterns of these antennas. The method of moments (MoM) is used to discretize the integral equations and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011